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Conjugate Jacobi series is introduced, according to the viewpoint of Mucken-
houpt and Stein, in the sense that the Jacobi harmonic function and the conjugate
harmonic function satisfy the generalized Cauchy—Riemann equations. The integral
form of Jacobi conjugate functions is also introduced, which is identifiable with the
conjugate Jacobi series in some sense. The L, weak-boundedness and L, bounded-
ness for 1 < p < oo of the conjugacy mapping are proved. The convergence of the
Abel means of conjugate Jacobi series is also considered.  © 1996 Academic Press, Inc.

1. INTRODUCTION

“Conjugacy” is an important concept in classical Fourier analysis which
links the study of the more fundamental properties of harmonic functions
to that of analytic functions and is used to study the mean convergence of
Fourier series (see Zygmund [16] and Hunt et al. [8]). Our particular
interest will be extending the conjugacy to that related to Jacobi series in
a natural and fruitful way, which will be of fundamental importance for
further investigation of some deeper results known to hold in the classical
case. The first work for this was done by Muckenhoupt and Stein [ 13],
who studied some properties of conjugate ultraspherical series and the
basic theory of the corresponding H? spaces. The purpose of the present
paper is to establish some basic theory of conjugate Jacobi series and
conjugate functions according to the viewpoint of [13]. The study of the
application of these results, especially for the corresponding H” theory, will
be done in a later paper.

The starting point of Muckenhoupt and Stein [ 13] is the notion of con-
jugacy on a Euclidean n-space as defined by Stein and Weiss [ 14]. They
introduced the so-called generalized Cauchy-Riemann equations by con-
sidering the functions which are invariant under rotations, leaving a given
axis fixed. For A>0, consider the set {P;(cos @)} of the ultraspherical
polynomials, which is orthogonal over (0, 7) with respect to the measure
sin** 6 df. When 24 is integral, 24 =n — 2, the P{(cos 0) arise in the Fourier
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analysis of functions on the surface of the sphere in Euclidean n-space. For
any function f on (0, 7), its ultraspherical expansion is

f(0)~ Z L5 PHcos 0), (1.1)
where w? is the orthonormalization constant (see [15, p. 81]) and «a,=
s /1 P’ (cos @) sin®* ¢ dp. We associate to (1.1) its Poisson integral

Uk, y)= Z "w/ Pi(cos 0), (x, y)=(r cos 0, r sin 0).

Then U satisfies the singular “Laplace equation”

0*’U 9*U 24 oU
—+>+— -=—=0. 1.2

Muckenhoupt and Stein [13] defined the conjugate Poisson integral
V(x, y) related to U satisfying (1.2) by the generalized Cauchy—Riemann
equations

2/
U,+V,=0, U-—V,—Zv=0.
y

This gives

Vix, y) = frH 2/Izarsm0

Py AP it (cos 0) (1.3)
n=1

and leads to the generalized Hilbert transform f — f, where

7(0)~24 Z n Sm() w’ P+ (cos 0).

n—1

In the limiting case 4 =0, we recover the usual cosine expansion because

lim A~ 'P/(cos 0) = (2/n) cos nf

A—0

and its conjugate P! (cos 0) sin 6 = sin nf.

In Section 2, by extending the above notion of conjugacy in a natural
way we introduce the conjugate Jacobi series in the sense that the Jacobi-
Poisson integral and the conjugate Jacobi-Poisson integral satisfy the
generalized “Cauchy—Riemann equations (2.8)”. In Section 3, we introduce
the definition of Jacobi conjugate functions in integral form, ie.,
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f(0) =lim, _ , £,(0), where f,(0) = [* T, £(0) - G(¢) du'*"(p), which is iden-
tifiable with the conjugate Jacobi series described in Section 2 in some
sense. If a == —1, Tq,f(ﬁ) and G(¢) reduce to (f(0—¢)—f(0+¢))/2
and (1/z) ctg /2 respectively, then the previous definition of f coincides
with that in the classical case. Theorem 1 in Section 4 states the L, weak-
boundedness and L, boundedness for 1 < p < oo of the conjugate mapping
f — f. whose proof is based on the exact estimates of the conjugate Jacobi—
Poisson kernel. At last, in Section 5, f, is used to study the convergence of
the Abel means of conjugate Jacobi series.

2. CONJUGATE JACOBI SERIES

Let P*(cos #) be the Jacobi polynomial of degree n and order
(o, B), &, B> —1, normalized so that P#(1)=("}*). They are orthogonal
and complete over (0,7) with respect to the measure du*?(0)=
22+ P+ sin?*+10/2 cos* +10/2 df. The relation between P*#and P is

. TO+12) T(n+22)
PA 9 — P(i 1/2, A—1/2) 6 .
s O = o Tns a1 (cos 0)

See [15, (4,7, 1)]. Define R™#(cos 0) = PP (cos 0)/P'*#)(1), and denote
by L,(a, ) (1<p<oo) the space of functions f for which | f| .. 5=
{5 1A0)” du'>P(0)} "7 is finite, and write |E|,z= |, du'="(0) for a set
Ec (0, n).

For fe L,(a, f3), its Jacobi series is

i (k) 0 =P R>P(cos 0), (2.1)
where 7
Foy=[ 1(0) REP(cos p) du (o)
o = { || TRz cos 012 dw/ﬂw)}_l (2.2)

Rk+a+p+ 1) IMk+oa+p+1) IMk+a+1)

:Zfocfﬁfl
INa+ D) IO+ 1) Hk+p+ 1) Ik + 1)

The relation

klk+o+B+1) 0P =d(a+1)? @@ A+D
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will be used many times. We shall associate to (2.1) the “harmonic” func-
tion (Poisson integral)

fr,0)="Y (k) 0P R*P(cos 0), 0<r<l, (2.3)

k=0

and we shall write it in the form U(x, y)= f(r, 8), (x, y) = (r cos 0, r sin 0).
It can then be verified that U(x, y) satisfies the differential equation

4,,U=0 (24)
for (x, y) in the upper semidisc, x>+ y? <1 and y > 0, where

o> 02

Aa’/f:ﬁﬁ_ﬁ-i-

{H[HH (a—p)x }1 0 a—p 0

()P yay (4 )7 o

The formal verification of (2.4) follows from the differential equation

1
g”(@)—i—m (c+p+1)cosO+a—p} g(0)+k(k+oa+p+1) g(0)=0
(2.5)
satisfied by g(0) = R{*"(cos 0) (see [15, (4,2,1)]).
It is not easy to see what the formal generalization of (1.3) to the Jacobi

case is, since the factor (n+24)~! is involved. But if we use the notation
R~ 1V24=12)(cos 0), then (1.3) becomes

[s’s}

2/1+1k:1

S(r. 0) =

riicf () ¢~ V24— VAR 12212 (cos () sin 0,

where f(k) is defined by (2.2) with a=f=1—1/2. We take this as our
model for the case of general o, f> —1, and define the “conjugate har-
monic” series (conjugate Poisson integral) of (2.3) by

o0

~ 1 A
T 0)=5"5 X FK ) o PR eos 0)sin 0, (26)
k=1

which leads to generalized Hilbert transform (conjugate series) f — f,
where

) ~5 5 S Ko RE S Yeos0)sino. (2)
k=1
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If we now set V(x-y)=f(r,0), then U and V satisfy the generalized
“Cauchy—-Riemann equations”

x—p
Uy“r‘ Vx—m V=0
(2.8)
(x—p)x }V
U.—V,— l+———F—5r—=
=V, {a+ﬁ+ T
This can be verified formally by use of (2.5) and
By k(k+a+p+1)
R == 5 ReAMH. (29)

See [15, (4, 21, 7)]. If we set u(x,y)=Ux,y), vx,y)=
YA/ X+ y*+x)P7*. V(x, y), then we get the more symmetric system

v, = _y2a+l( /x2+ y2+x)/j‘79cuy
vy:y20c+l( /x2+ y2+x)/37<xux.
v(x, y) is harmonic in the sense conjugate to u(x, y), ie.,
A_m_ly_ﬂ_lvzo.

The equations in (2.8) are first derived in Bavinck [5, Sect. 6.2] and in
an unpublished note of Gasper.
For the conjugate Poisson integral (2.6), we have

Tir 0= 1(0) 0r.0.9) du*"(p). (210)
where
1 o0
or, 0, ¢) =503 ko= P R+ 1E+D(cos 0) RYP)(cos @) sin O
& k=1

is the conjugate Poisson kernel. It follows from (2.9) that

00, )=~ [ S P 0 g s, )

where

P*P(s,0,0)="Y sfol@PR*P(cos 0) RP(cos p)
K=o

is the translated Poisson kernel.
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For o> f> —1/2, we use the product formula for Jacobi polynomials
due to Koornwinder [9]

R&A)(cos 0) R=F(cos ¢) ijW) (cos ) dm, (1, &) (2.12)

to get
PP(s, 0, 9) = f j PP (s, ) dm (1, &), (2.13)
where
cos Y =2(cos 0/2 cos ¢/2)* + 2(t sin 62 sin ¢/2)*
+ tsin 0sin ¢ cos & — 1,
dm (1, &) =, p(1 — 1) PV 2P+ sin® & dt dE, (2.14)
B 2r(a+1)
“PTIR) Ma=p TF+172)°
and
PP(s, )= i sk P RP(cos ) (2.15)
k=0

is the Poisson kernel. It follows from (2.9) that

a(?p PP (s, ) = —2(o+ 1) sP+ 154D, ) sin . (2.16)

Using (2.13) and (2.16) we obtain
o, 0,p)=2(ax+1)r > F-1

r T 1
X[ [ e P I N ) Q{1 ) dimy (1, ) ds
E=0Yr=0
(2.17)

where  is defined by (2.14) and

Q(t, &) =sin 0 cos® ¢/2 — t* sin O sin® ¢/2 —tcos Osin p cos &, (2.18)



CONJUGATE JACOBI SERIES AND FUNCTIONS 185

If a>p=—1/2, a limiting argument leads to the desired form for
o(r, 0, p), and if a = > —1/2, the explicit formula is given by [13]:

o(r, 0, ¢) =

(200 + 1)(2a + 3) j’j” s — bs1n2“fd£ds

4t (1 =2as+s*)**+32

where a =cosf cos@ +sinf sinp cos&, b=2 sin 0 cos ¢ —2 cos 0 sin ¢ cos &.

3. THE DEFINITION OF CONJUGATE FUNCTION
IN INTEGRAL FORM

In the trigonometric case (e == —1/2), we can associate to a general
function f( )~ Z a, cos kO its conjugate function 7(0)=1lim, , f.(0),
where f,(0)=[7 T, f(0)-G(p)dp, T, f(0)=(f(0—¢)—f(0+¢))2, and
G(p)=(1 /n) ctg (p/2 In some sense, the Fourier series of f(0) is
> a, sin k. The purpose of this section is to generalize the above notions
to the Jacobi case. We will find the suitable forms of Tq, f and G(¢) for
general a and f and define

T(0)=[" T, £0)- G(g) du="(p)

such that for some “good” f with expansion (2.1), the “conjugate” function

7(0)=1im, ., £.(0) is of conjugate expansion (2.7).
We consider the integral representation of

W R0, o) =k(k +a+B+1) R+ D(cos 0)

x R P+ D(cos @) sin 0 sin ¢
based on R{*# which is an analogue of the trigonometric formula
sin k0 sin kg = 1(cos k(0 — @) — cos k(0 + ¢)).

If «=p> —1/2, we use Gegenbauer’s product formula (see Askey [2,
(4.10)])

R;({lel,a‘F ”(COS 0) Rg\:a7+ll,a+ l)(COS §0)

4
=Cyit I R+t D(cos W) sin®*+2 & dé
0
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and (2.9) to get, by integration by parts, that
W90, p)=2, J R\ (cos W) sin* ¢ cos & dE,
0

where

cos ¥'=cos 0 cos ¢ + sin 0 sin ¢ cos &,

Ia+1) A+ 1) Ma+2)

(3.1)

“TTa+12) 1127 T Tat12)112)
If a>p> —1/2, by replacing (a, ) by («+1, f+1) in Koornwinder’s

product formula (2.12) and integrating the right-hand side in ¢ by parts, we
obtain

n pl
W0 g) = | | R cos ) diy(1. ©)

where  is defined by (2.14) and

N B 8(a+1) I +2)
dma/j(ta é) _F(I/Z) [‘(a_ﬂ) F(ﬁ‘i‘ 1/2)

x (1 =)= =1 28+25in% & cos & dt dE.

Now we define

T, 0 =ﬁ j: f(W¥) sin®* & cos & dé

ifa=p> —1/2; and

1 n pl
T 10 =301 ), | W dnge

ifa>pf> —1/2. Here ¥ and y are given by (3.1) and (2.14) respectively.
Let us recall the definition of the generalized translation operator T, in
terms of Jacobi polynomials:

T, f(0)=c, [ f(¥)sin ¢ de



CONJUGATE JACOBI SERIES AND FUNCTIONS 187

ifa=p> —1/2; and

T, 0= [ ) digta, &

if «> > —1/2. An equivalent description of T, in the kernel form is

T, /0= | 16 K0, 9.&) du"(C)

where K(0, ¢, &) is Gasper’s kernel. For these, see [2, 7, 9, 10, and 11].
It is easy to see that for o> > —1/2 there exists an absolute constant
M >0 such that

1T, f(O)I<M(T, | f1)(0). (32)

Hence 7"(/, is bounded on L,(«, ), 1 <p< oo, or C, uniformly in ¢, since
T, is also (see [7, 11]). Thus for any f € L,(«, f§), with expansion (2.1), we
have

Z f :x+l/i+1)R(ac+l/1’+l)(COSO)

k=1
x R+ 1+ (cos @) sin 0 sin ¢. (3.3)

In a limiting way, the above arguments can be done and all hold for the
case o> fi= —1/2.

ProrosITION 1. Letaz=f> —1/2 andlet fe X=L,(a, ), 1 <p <0, or
C. Then

(i) T,f(0)=0 if f(0) =const,;
(it) Timg, o [T, ()] x=0;

(i) (517, £(O)7 du'=P(p)=0(6>*2), as 50, for almost all
€(0, m);

(iv) for feL,(a, B), 0<y<min{a+f+1,26+2},

[T 101 == (g) < Meos™ 0 [ 1 ()" du"(p).

Proof. By the definition of T

. (1) is obvious. For f,(0) = R{>"(cos 0),

k(k+oa+p+1)
4a+1)?

R(oc+1/)’+l (COS 9) cx+1/i+1)(cos §0) Singsm(p,

Tg/) ﬁ((O) =



188 ZHONGKAI LI

so that lim, |7, fi(-)ll y=0. Thus the completeness of {R{#(cos 0)}
and the boundedness of 7, yield (ii). It follows from (3.2) and the proof
of [11, Lemma 2.1] that for 0 <0 <= and 0 < <min{6/2, (n — 0)/2},

(5 i~
J, 17 1(0)17 du" )
)
< M&™+ sin= 1 9/2cos 102 j 1£(0+ @)|” du'™PN0 + p).
-5

Using (i), an adaptation of the proof of the classical Lebesgue theorem
gives the conclusion of (iii) (see [ 16, Vol. I, p. 65]). At last, (iv) is a direct
consequence of (3.2) and Li [11, Lemma 2.2].

Next we consider the series

> 20042

(oc+l[)’+1) (ac+l/i+1) :
Wy R} COS @) sin @.

By Bavinck [4, Theorem 4.5], there exists a function, say G(¢), which
is integrable over (0,7) with respect to the measure sin***2¢/2

cos**2 /2 dp and is continuous on (0, 7], such that
X 20042 .
Z 7+:+ﬁ+1 LA DRET LI D (cos ) sin . (3.4)

If fis a “good” function such that |f(k)| tends to zero so quickly, it
follows from (3.3) and (3.4) that

o PR+ (cos 0) sin 6.

[T, £0)- Glo) du™"(9) = ¥,

0 k=1

For any fe L (a, ) and 0 <& <m, since G(¢) has only a singularity at
¢ =0, we introduce f, as follows:

70 =["7,10)- Glo) du*"(p). (35)

This is a truncated generalized Hilbert transform and plays a crucial role
in the summability of conjugate Jacobi series.
An integral representation of G(¢) can be found. Let

& 200+ 2

G(r,p)=Y,

———— kP AT DRET LA D(cos ) sin 3.6
Zok+at+p+2 (cos p)sin . (3.6)
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Then for 0<r<1,

2042 7 .
G(r, (P)=WL srHBFIplt i) (g @) sin ¢ ds (3.7)

where P*#)(s, @) is the Poisson kernel (2.15). Letting  — 1, we have by [4,
Theorem 2.4] that

1
G(p) = (20+2) L s* B PEELBE (s ) sin ¢ ds. (3.8)

It follows from (5.4) that

2a

G(p) ~sin =2 /2 cos /2, O<p<m.

It is noted that if x =f> —1/2,

Glo) = 21 (0 +5/2) j] 2T (1 —5?)sin @ p
P T T2 T+ 1) o (1=25cos g + 5772 4

This follows from (3.8) and (5.3) by applying I(2z)=2%"'n"'2I(z)
Nz +1/2).

4. L, THEOREM FOR CONJUGATE FUNCTIONS

This section will follow the path of [13, Sects. 7, 8] to prove the basic
fact that the conjugacy mapping f — f is bounded on L, for 1 <p<ooand
weakly bounded on L,. Askey [1] indicated that the proof of the L,
boundedness for 1 < p < co could be done by the method in that paper (see
[5, Sect. 6.2]). But his method does not work for p=1. Just as the proof
in [13], our proof here is based on the exact estimates for the conjugate
Poisson kernel Q(r, 6, ¢).

Set
1—7? | I
P, 0):2(1—2rcos 0+r2)=§+n§‘1r cos 16,
~ rsin 0 & )
P(r,0)=———————= ) r"sinno,

" 1—2rcos0+r?

n=1

p(0, @)= (sin /2 sin ¢/2) ~*~ "2 (cos 0/2 cos @/2) F~ 12,



190 ZHONGKAI LI

LEmMA 1. Let a, f> —1 and 0<r < 1. Then for 0 <0 <n/2,
(I) f0<3p <20,
o(r, 0, )= 0(0~>*2);

(I) if 0<p<20<3¢ and ¢ <3im, then there are bounded functions
u(0), independent of r and ¢, and v(¢), independent of r and 0, such that

O(r, 0, ¢) —u(0) v(@) p(0, ¢) P(r, 0 — )

1 20
- 0 <92o¢+21 g |9_(p|>+ 0(0720(711)(”9 9—(0)),

(1) if 0<30< 29 <37,
o(r, 0, p)=0(0p >*7);

(IV) ifin<o<m,
(r, 0, ¢) = 0(0).

Lemma 1 is a consequence of Muckenhoupt [ 12, Theorems (5.1), (7.1),
and (8.3)]. In fact, a routine computation shows that Q(r, 0, ) equals

IS} k 1/2
27 (0, 0) Y <k+oc+ﬂ+1> P EN0) DI (o),
k=0

where @) =20 £+ DR (el=P)12 REP(cos p) sin™+ 2 /2 cos” + 12 )2
are the orthonormalized Jacobi polynomials. Parts (I) and (III) of Lemma 1
follow from [ 12, Theorem (7.1)], part (II) from [ 12, Theorem (8.3)], and
part (IV) from [ 12, Theorem (5.1)].

If 7/2 <0 <, the similar estimates hold for Q(r, 6, ¢) by use of

Q(a’ﬁ)(rs 05 QD) = _Q(ﬁ’a)(ra T— Ha = (P)

We will need the following estimates for Q which can be easily derived
from Lemma 1 and where the symmetry on the variables 6§ and ¢ appears.
In the proof of Theorem 1, the symmetry will be used (see [ 13, p. 12]).

Lemma 1. Let o, f> —1 and 0<r<1. Then for 0 <0, ¢ <m,

(I) O, 0,p)=0(c(0)), 0<p <02 or 02+7)2<p<m;
(I1) QO(r, 0, ) =0(a(@)), 0 <@ <20 —7 or 20 <@ <m;
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(I1)  Q(r, 0, @) —u(0) v(p) p(0, @) P(r, 0 — @)

20( — 0)

=0/ ag(0)log +
<() SRy

> + O(a(0) P(r, 0 — @) sin 0),
max(60/2, 20 — ) < ¢ <min(20, 6/2 + n/2),

where o(0)=sin">*"260/2cos **720/2 and u(0) and v(p) are as in
Lemma 1 (II).

We are now in a position to state the main result on conjugate functions.

THEOREM 1. Let o, f> —1 and 0<r<1.

(i) If feL,(a, p) and s>0, then
{01 7(r,0)> 5} g < (A/5) 1 /111y (4.1)
(i) IffeLy(a B), 1 <p<oo, then
17 )l oy < Ap 1S Nl - (42)

Moreover, there is some ]76 L,(a, ) such that f(r, 0) converges in L,(a, f)-
norm to f(0) as r — 1 and || f1l yup) < Ap | f | o p)- In addition, (2.7) holds.

The proof of (4.1) follows the well-understood path given in [13,
pp. 40-42], except that we need to appeal to Lemma 1. Define N, f(0) =
f(r, 0) and

NSO =] 1(0) Q. 0. 0) duP (). (43)

Then N ¥ is the adjoint of N,. With these, by the Marcinkiewicz interpola-
tion theorem (see [ 16, Vol. I, p. 112]), an adaptation of the argument in
[13, pp. 39,42] proves (4.2). The rest of the conclusion of part (ii) can be
verified by a standard approximation method.

We recall the space B of Borel measures do on [0, 7] whose norm

ldo ||, gy =27+ F+! j: sin®*+1 0/2 cos? 1 0/2 |da(0))|

is finite. By the usual way, Theorem 1 implies the following corollary.
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CorOLLARY 1. Let o, > —1 and do e B. If do ~ Xa,»\"' R (cos 0)
and

o0

f(r,0)= Z

r"kak

n 5@ AR H1E+ D (cos ) sin 0,

then for 0 <p <1,
T 1/p
{17000 du@)} " < 4, 1do1
Now we consider the inverse of the mapping / — f. For fe L,(«, f),
0) ~ Z flk) w@* P+ DR+ 1S+ D(cos 0) sin 0,

where f(k)= {7 f(¢) R*“#*D(cos @) sin ¢ du'*"(¢), define the operator
S, as follows

S, f(0)=(2a+2) Z k) r*k o\ D RF (cos ).

It is easy to see that

0= 19) *r.0. 0) du*P(g),
where
X w}f’ﬁ)Rﬁj"ﬁ)(cos 0) R+ 1#+(cos ¢) sin ¢
= Q(r 9. 0)+ (a+f+1) [ 5710, 0. 0)ds
Thus

S, = N*+(a+ﬁ+1)j ~IN* ds, (4.4)

where N* is defined by (4.3).
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Since by (42) and a standard duality argument [N f|l,, 5 <
A, [ fll oy for 1 <p<oco, it then follows from (4.4) and the semitrival
estimate [N fl yp) < A7 || [l papy for 0<r<1/2 that

1S S papy SAp 1 flpiopy 1<p<o0,  0<r<lL (4.5)

COROLLARY 2. Let o, f> —1. If feL, (o, f), 1 <p<oo, and f(0)=0,
then

Bp H.f’“p(:x,[f) < Hf”p(fx,ﬁ) <Ap Hf”p(:x,/j)' (46)

For any polynomial f(0), f(0) =3 _, aro" Ri*P(cos 0), it follows
that lim, , ; S, f(0) = f(0) in L,(a, f)-norm. Then by (4.2) and (4.5), (4.6)
is proved.

5. SUMMABILITY OF CONJUGATE JACOBI SERIES

In this section we will use the truncated conjugate function f, defined by
(3.5) to study the convergence of the Abel means f(r, 0) of conjugate Jacobi
series.

For any 0 <r <1, it follows from (2.6) and (3.3) that

Fr.0)=[ T, /10)-Glr.g) du™"(p), (5.1)
where G(r, @) is defined by (3.6).

THEOREM 2. Let a=f>= —1/2 and € L(, ). If for some 0 € (0, n),
o
f T, f0) du™P(p)=0(6>*2), as 50,
0

then

lim {7(r, 0) = 71 _,(0)} =0. (52)

r—1

Moreover, (5.2) holds for almost all 0 € (0, ).

The proof of Theorem 2 depends on the estimates for G(r, 0).

LemmA 2. Let a=f>= —1/2. For 12<r<1, the following estimates
hold:

(i) G(r,e)=0((1—r)=>*72), (0/0p) G(r, ) = O((1 —r)~>*7?), 0 <
p<l—r;
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To prove part (ii), we use (3.7), (3.8), (5.4), and (2.16) to get that for
l—r<ep<mnm,

G(r, ) — G(p)

=2(<x+1){jl+(1—r“ﬂ2) [

r 0

}s“+ﬁ+]P(“+1’ﬁ+')(S, §0) sin 17 ds

—o(1) {f‘+(1—r) ﬁ(l —5) A(s, )~ sin ¢ ds

r 0

= O0((1=r) 977
and

6 ! —a—f—2 "
LG ) =Gl =2a+ 1) {[ +(=r e [

x s* P Pt LBt (s 0) cos @
—2(a+2) sP*T2ET2) (s, ) sin? @] ds
=0((1=r) 7).
Now we complete the proof of Theorem 2.
It follows from (5.1) and (3.5) that f(r, 8) — f, _(0) = A+ B, where
A= T, 10)- 6 o) i),

B=[" T,f(0)-[G(r.¢)~G(9)] du'*"(g).

1—r

By Lemma 2, a familiar argument leads to 4 =0(1) and B=o(1) as r— 1.
Proposition 1(iii) implies the last conclusion of Theorem 2.
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